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Predicting trends in water quality plays an essential role in the field of environmental

modeling. Though artificial neural networks (ANN) have been involved in predicting water

quality in many studies, the prediction performance is highly affected by the model’s

inputs and neural network structure. Many researchers selected water quality variables

based on Pearson correlation. However, this kind of method can only capture linear

dependencies. Moreover, when dealing with multivariate water quality data, ANN with

the single layer and few numbers of units show difficulties in representing complex

inner relationships between multiple water quality variables. Hence, in this paper we

propose a novel model based on multi-layer artificial neural networks (MANN) and mutual

information (MI) for predicting the trend of dissolved oxygen. MI is used to evaluate

and choose water quality variables by taking into account the non-linear relationships

between the variables. A MANN model is built to learn the levels of representations

and approximate complex regression functions. Water quality data collected from Baffle

Creek, Australia was used in the experiment. Our model had around 0.95 and 0.94 R2

scores for predicting 90 or 120 min ahead of the last observed data in the wet season,

which are much higher than the typical ANN model, support vector regressor (SVR) and

linear regression model (LRM). The results indicate that our MANN model can provide

accurate predictions for the trend of DO in the upcoming hours and is a useful supportive

tool for water quality management of the aquatic ecosystems.

Keywords: predictive model, artificial neural network, mutual information, water quality, machine learning

1. INTRODUCTION

Increasing human populations together with the progression of climate change is leading to
unprecedented changes in aquatic ecosystems. Climate change is expected to cause water quality
decline, with negative effects on aquatic organisms (Gillanders et al., 2011). In this context, the
development of reliable water quality predictions is critical to improve management of aquatic
ecosystems. Traditionally, mechanistic models have been used to predict water quality (Silva et al.,
2014). However, the success of these predictions depends on how tightly the physical environment
drives the water quality of the system (Robson, 2014). Most recently, data-driven models have
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provided successful in predicting water quality. For instance,
ANN have been used to accurately predict anomalies in
surface water quality (Shi et al., 2018). ANN have been
also applied to successfully predict dissolved oxygen (DO)
in rivers (Sarkar and Pandey, 2015) and aquaculture prawn
ponds (Dabrowski et al., 2018).

Dissolved oxygen is a key indicator of the health of aquatic
ecosystems. The level of DO in water determines the quality
and quantity of habitat available to aquatic organisms. Low DO
levels can cause aquatic organisms to experience acute stress
and eventually lead to their mortality (Gillanders et al., 2011).
In addition, changes in DO alter biochemical cycling and the
release of nutrients from the sediments. Phosphorus release from
the sediments can occur in short time-scales with the onset
of low oxygen levels close the sediment-water interface (Vilas
et al., 2018). Thus, short-term predictions of DO can guide the
implementation of management actions to maintain good water
quality conditions.

Dissolved oxygen levels are driven by the physical
environment and complex biogeochemical processes (Vilas
et al., 2017). As the solubility of oxygen in water depends on the
temperature of water, water temperature is an important driver
of the concentration of DO. Dissolved oxygen is also driven
by the abundance of primary producers. Thus, data-driven
predictions need to consider variables that account for both the
physical and biogeochemical environment.

Even though a number of data-driven models are proposed
for DO prediction, there has been little focus on developing a
systematic way to select appropriate inputs (Wu et al., 2014).
For instance, Sarkar and Pandey (2015) combined data sets
obtained from three different monitoring stations and used
them as input to the ANN model, without implementing
any feature selection method. In addition, Shi et al. (2018)
used seven surface water quality variables in their ANN based
model to predict water quality anomalies, also without using
any variable analysis method. In addition, merely including
all available variables may contain irrelevant or redundant
information, which can decrease the performance of the
data-driven model.

While many studies select water quality variables based on
Pearson correlation, this method can only deal with linear
dependencies. Beside this, some researchers (Antanasijević et al.,
2014; Burchard-Levine et al., 2014; Alizadeh and Kavianpour,
2015; Piotrowski et al., 2015) have evaluated the combinations
of inputs based on the model’s outputs. This trial and error idea
needs to test all possible groups of inputs by building a number
of predictive models, which can be very inefficient when dealing
with large volumes of water quality datasets.

In recent years, artificial neural networks have shown great
flexibility in modeling and forecasting non-linear dynamic time
series processes. In the field of environmental andwater resources
modeling, different types of ANN models such as radial basis
function network (Deng et al., 2014) and multi-layer perceptron
Najah et al. (2013) have been used. However, most of these studies
(Cordoba et al., 2014; Kim and Seo, 2015; Csábrági et al., 2017)
have used shallow neural network structures with few hidden
units and single layer. These models cannot learn multi levels of

representation from the water quality inputs because of limited
number of hidden layers.

Hence, we proposed a novel approach for dissolved oxygen
prediction that enables: (a) the selection of best-related water
quality variables for predicting DO, and (b) the prediction of
short-term (90–120 min) changes in DO concentration. In our
predictive model, a mutual information based feature selection
strategy is designed to evaluate the association between water
quality variables. Moreover, a MANN is used to thoroughly learn
levels of representations and approximate complex non-linear
relationships within multivariate time series data.

2. MATERIALS AND METHODS

2.1. Study Area and Water Quality Data
The water quality of Baffle Creek is studied as an example. Baffle
Creek estuary system is one of the largest estuaries inQueensland,
Australia and has a catchment area of approximately 3,000 km2.
The time series of water quality data has been collected by the
in situ near real-time monitoring sensors (YSI, Model 6600)
deployed 16 km from the mouth of Baffle Creek (Figure 1).
Readings of water temperature, electric conductivity (EC), pH,
dissolved oxygen (DO), turbidity, and chlorophyll-a (Chl-a) were
recorded every half hour at 0.2m below water surface1.

Climate in the north area of Queensland is characterized by
wet and dry season patterns. In general, the wet season starts
from November to April and the dry season starts from May
to October. The data set used in this paper contained 17,530
observations measured between 1/11/2013 and 31/10/2014.
For the wet season, training data included first 5 months’
observations (7,248 records) and testing data included last 1
month’s observations (1,440 records). For the dry season, training
data included first 5 months’ observations (7,354 records) and
testing data included last 1 month’s observations (1,488 records).
A summary of the water quality variables is shown in Table 1.

Water quality variables such as EC, turbidity and Chl-a have
a wide range of values, particularly during the wet season
(Table 1) and thus a predictive model should have the capability
to handle such a large variance in the data. Moreover, water
quality variables show different ranges between the wet and dry
seasons. For example, the minimum value of EC is only 13 µS
cm−1 in the wet season, which is over 200 times smaller than
that in the dry season. Hence, the performance of predictive
model needs to be evaluated both on the wet and dry seasons to
guarantee good generalization of the proposed method.

Figure 2 illustrates the data distribution of 6 physochemical
variables listed in Table 1. It is clear that the distribution of
most water quality variables is not symmetric. Values of water
temperature, turbidity and Chl-a are most concentrated toward
the lower end of the axis with some extreme large values.
On the contrary, variables like pH and EC have few small
values and most of the data have higher values. The uneven
distribution of water quality data in Figure 2 is also a challenge
for learning the changing patterns for different water quality

1Ambient Estuarine Water Quality Monitoring Data. Available online at: https://

data.qld.gov.au/dataset (Accessed November 20, 2017).
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FIGURE 1 | Baffle Creek catchment area and the water quality monitoring station.

TABLE 1 | Details of water quality data.

Variables Unit Min Max Mean Std dev Season

Water temperature ◦C 23.84 32.73 27.61 1.76 Wet

15.73 29.88 21.57 2.73 Dry

EC µS cm−1 13 55,600 37719.06 17070.59 Wet

2,651 52,350 34658.05 10481.41 Dry

pH u. of pH 6.48 8.47 7.8 0.33 Wet

7.45 8.39 7.99 0.12 Dry

DO mg L−1 3.72 8.06 6.12 0.59 Wet

5.95 9.13 7.33 0.56 Dry

Turbidity NTU 1.2 1,289 11.74 49.79 Wet

0.8 80 4.29 2.75 Dry

Chl-a µg L−1 0.1 31.1 4.57 2.55 Wet

0.5 415.4 5.55 9.74 Dry
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FIGURE 2 | Histogram of 6 physiochemical parameters.

variables. Hence, neural network can be a suitable method in
modeling water quality variables because it supports the non-
linear transformations and does not rely on stationary data series.

Normalizing original data boosts the performance of ANN
models significantly. In this study, we choose the min-max data
normalization method to preprocess all the inputs. The min-max
normalization is shown in Equation 1:

Î =
I

Imax − Imin
, (1)

where I is the original value and Î is the normalized value.

2.2. Mutual Information Based Feature
Selection
Feature selection is an important issue in machine learning and
has been widely investigated. Effective feature selection results in
a better and simpler understanding of the process that generates
the data (Vergara and Estévez, 2013).

2.2.1. Mutual Information
Similarity measures such as the Pearson correlation coefficient
(Pearson, 1895) are widely used in evaluating the relationships
between different features in many water quality prediction
studies. Though the computing of Pearson correlation can easily
to be scaled up to large data sets, the correlation is a measure of
the linear relationship between random variables.

In this study, we choose to select water quality features based
on their "mutual information" content. The mutual information
is a measure of the amount of information that one random
variable has about another variable (Kraskov et al., 2004). From
information theory, formally, the MI is defined as follows:

I(X,Y) =

∫∫

dxdyµ(x, y)log
µ(x, y)

µx(x)µy(y)
. (2)

where the marginal densities of X and Y are µx(x) =
∫

dyµ(x, y)
and µy(y) =

∫

dxµ(x, y).

TABLE 2 | Correlation scores for each water quality variable against do.

Variables MI scores Pearson correlation coefficient

pH 0.48 0.29

Water temperature 0.17 −0.10

Chl-a 0.12 0.43

EC 0.12 −0.22

Turbidity 0.05 0.07

Unlike correlation coefficients, MI is more general
and contains information about all linear and non-linear
dependencies. The non-binning MI estimator proposed by Ross
(2014) was calculated for each input feature (Table 2).

MI scores ranked in Table 2 show how much information
each variable has about DO. Among these variables, turbidity
has much lower MI score and EC has the second last
MI score. Water temperature and Chl-a have similar MI
scores and pH shows a significant high MI score. Based on
the MI definition in Equation 2, high mutual information
indicates a high relevance between the water quality variable
and DO. In this case, both EC and turbidity are omitted
in predicting DO.

Additionally, the Pearson correlation coefficient is also
calculated for each water quality parameter. Water temperature,
EC, and Turbidity show extremely low correlation with DO based
on the Pearson correlation coefficient. Hence, only pH and Chl-
a are selected for predicting DO. In the experiment section, the
predictive performance will be evaluated for these two feature
selection algorithms.

2.2.2. Correlation Between Water Quality Variables
In this subsection, we analyzed the patterns of water quality
variables (water temperature, EC, pH, turbidity, and Chl-
a) and compared them with those of DO. This allowed
us to demonstrate the validity of the MI based feature
selection strategy and explain the reason of selecting
pH, water temperature and Chl-a for predicting the
trend of DO.

In the left column of Figure 3, the daily changes
of 5 water quality variables are shown. The temporal
change of DO is also added to each subfigure for
comparison. Considering variables listed in Table 1

all have different units, we scale their values by using
the min-max normalization (Equation 1) to make the
comparison clear. Correspondingly, the relationships
between water quality variables and DO are illustrated in
the right scatterplots.

In Figure 3, DO increases during the day and declines
during night, with maximum value occurring at 5 p.m. in the
afternoon. Chl-a, pH, and water temperature show significant
positive correlation with DO. They all follow a similar pattern
than DO, decreasing during the night and increasing during
the day. Changes in DO in time are a result of physical and
biogeochemical processes. On a diurnal time-scale, DO increases
during the day as a result of the photosynthetic activity of
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FIGURE 3 | Daily changes of 5 physochemical parameters and the

correlations with DO. Solid and dotted lines in left column represent water

quality parameters and DO, respectively. Relationships between water quality

parameters and DO are illustrated in the right scatterplots. All the water quality

parameters have been scaled by using the min-max normalization

in Equation 1.

primary producers (i.e., phytoplankton) and decreases during
the night due to respiration. In addition, photosynthesis and
respiration drive the diel changes in dissolved carbon dioxide
(CO2) concentrations that induce the daily variation of pH (Zang
et al., 2010). All of these processes are affected by the temperature
of the water.

FIGURE 4 | MANN for predicting DO.

On contrary, the daily trends of turbidity and EC do not
show clear relationship with that of DO. For example, the
peak value of turbidity is attained early in the day and for
most of the time turbidity remains in a low level. In Table 2,
EC and turbidity also have low MI scores. This demonstrates
that MI-based feature selection is likely better suited to select
water quality variables for predicting the trend of DO than
the Pearson correlation coefficient. The Pearson correlation
coefficient disregards water temperature and EC, which may
affect the predictive performance of the model.

2.3. Multi-Layer Artificial Neural Network
With Dropout
Artificial neural network models input data to higher level
abstraction by using an architecture with many hidden
layers composed of linear and non-linear transformations. In
this paper, a multi-layer feedforward neural network with
dropout mechanism is used in building our water quality
predictive model.

2.3.1. Multi-Layer FeedForward Neural Network
A multi-layer feedforward neural network has an input layer
of source nodes and an output layer of neurons. In addition
to these two layers, it has multiple layers of hidden units. The
hidden units extract important features contained in the input
data and themultiple hidden layers provide the capability to learn
representations of data with multiple levels of abstraction. The
structure of the MANN used is illustrated in Figure 4.

As it is shown in Figure 4, the number of units in the input
layer is p ∗ n, where p is the number of selected variables and n
is the number of historical observations. In this way, models can
accept time series water quality data withmultiple variables. Also,
a fully connected layer with linear regression is added in the end
to output single prediction value.

One of the challenges in building neural networks with
multiple layers is updating the weights of the networks. In our
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FIGURE 5 | Neural network with dropout.

model, the stochastic gradient descent algorithm (SGD) (Robbins
and Monro, 1951) is used to train the MANN. During the
training process, inputs data is fed into the network to optimize
the weights between units. Adjustment of the weights between
units in different layers is done by backward propagation of the
error during training phase. The network adjusts the value of
the weights to reduce the difference between the output and
target values (Sharma and Venugopalan, 2014). The error is
minimized across many training loops until we get the MANN
with required accuracy.

2.3.2. Dropout
When a MANN is trained on a relatively small training set, it
typically performs poorly on held-out test data. In the field of
water quality modeling, considering the difficulties of monitoring
site deployment and the limitation of sensor hardware, it is hard
to get large data sets, spanning the period of interest.

Dropout is a technique that can both prevent overfitting and
provide a way of approximately combining many different neural
network architectures efficiently (Hinton et al., 2012). Dropout
refers to dropping out units in a neural network, which means
temporarily removing it from the network, along with all its
incoming and outgoing connections. Dahl et al. (2013) proposed
an equation to compute the activation yt of the layer t of the net
during forward propagation. Here the activation yt indicates the
status of all the activations of the hidden units in a given layer:

yt = f (
1

1− r
yt−1 ∗ mW+ b), (3)

where f is the activation status for the tth layer, W and b

are, respectively the weights and biases for the layer, ∗ denotes
element-wise multiplication, and m is a binary mask from
Bernoulli(1−r) indicating which activations are not dropped out.

FIGURE 6 | Water quality prediction model proposed in this paper.

TABLE 3 | Hyperparameters of our proposed MANN models.

Hyper parameters Predictive models

90-min ahead 120-min ahead

No. of hidden layers 3

No. of hidden units per layer 3

Dropout rate 0.2

Activation function ReLU

Training algorithm SGD

By using dropout technique, each training example can thus
be viewed as providing gradients for a different, randomly
sampled architecture. For example, in Figure 5, a number of
hidden units are inactivated during training so the ANN’s
structure is changed in each training phase. Comparing training a
model without dropout, applying dropout can prevent the hidden
units from co-adapting too much. The final neural network
efficiently represents a huge ensemble of neural networks, with
good generalization capability (Dahl et al., 2013).

2.4. Water Quality Prediction Model
In this subsection, we developed our water quality predictive
model by integrating MI and MANN with dropout mechanism.

In our water quality predictive model (Figure 6), data
collected from monitoring sites is analyzed first, which gives
us statistical overview about the water quality variables. Then,
the MI feature selection is implemented to pick up most
related variables. After rescaling input variables based on min-
max normalization (Equation 1), the input samples are created
based on the selected variables and the historical number of
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observations we choose. Finally, the MANNmodel with dropout
mechanism is used to output the predictive value.

3. RESULTS AND DISCUSSION

3.1. Experiment Setting
In this study we implemented 90 min (3 time steps) and 120 min
(4 time steps) forecasts of DO for both wet and dry seasons. For
the inputs, we used the last 12 water quality observations of water
temperature, pH, Chl-a and DO as the MANNmodel’s inputs.

The structure of the neural network also needs to be
determined. This structure, known as hyperparameters, includes
the number of hidden layers, the number of units in
each layer, activation function, between others. Optimizing
the hyperparameters is critically important for the model’s
performance. In this experiment, by both considering the size of
water quality data set and the model’s training time, we finally got
the optimized parameters shown in Table 3.

We chose SGD algorithm and ReLU activation function
(Nair and Hinton, 2010) together for our MANN model. ReLU
is a computationally efficient activation function because it
involves simpler mathematical operations, which can accelerate
the training process when we train ANN with multiple layers.
Moreover, the ReLU activation function has range [0,∞]. This
property makes it support model positive real value, which is
important in processing water quality parameters.

All the experiments are evaluated on the CSIRO HPC server
with 1 Core Xeon E5-2690 and 32 GB memory. The MANN and
ANN are built on the Keras neural network framework (Chollet
et al., 2015). The SVR and LRM are implemented on the scikit-
learn machine learning framework (Pedregosa et al., 2011).

3.2. Evaluation Criteria
In order to measure the performance of the predictive model,
we used the mean absolute error (MAE), the coefficient of
determination (R2) and the root mean square error (RMSE).

They are defined as:

MAE =
1

n

n
∑

i=1

|fi − f̂i| (4)

R2 = 1−

∑n
i=1(fi − f̂i)

2

∑n
i=1(fi − fi)2

(5)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(|fi − f̂i|)2 (6)

where fi is the observed value, f̂i is the predicted value

and fi =
1
n

∑n
i=1 fi.

3.3. Prediction Results
Figure 7 shows the prediction of DO in both wet and
dry seasons. It is clear that the concentration of DO
has stronger variation in the wet season (Figure 7A) than
it is in the dry season (Figure 7B). In the wet season,
the concentration of DO increases from around 4.0 mg
L−1 to nearly 7.5 mg L−1 within the first month and
thereafter fluctuates between 5.5 and 7.0 mg L−1. During
this period, our MANN model is effective in predicting the
diurnal variation pattern as well as the long term variability.
Also, the MANN model has a quick response when DO
concentrations start to increase or decrease. This means the
MANN model is very sensitive when the trend of DO
begins to change.

Similarly, our MANN model performs well in predicting the
concentration of DO in the dry season (Figure 7B). In the dry
season, the concentration of DO changes within a small range
between 6.2 and 7.0 mg L−1. The reason behind this is that
rainfall affects the concentration of DO significantly and the
rainfall frequency during the dry season is low.

Moreover, Figure 8 shows the details between the prediction
and measured value in 4 different experimental cases. The

FIGURE 7 | DO prediction in both the wet and dry seasons. (A) 90 min ahead DO prediction in the wet season (1/4/2014-30/4/2014). (B) 90 min ahead DO

prediction in the dry season (1/10/2014-31/10/2014).
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FIGURE 8 | 90/120 min ahead prediction and measured value comparison. Wet-90 represents the experimental case for 90 min ahead prediction for the wet season.

Other cases are named in the same way. (A) Wet-90 DO prediction. (B) Wet-120 DO prediction. (C) Dry-90 DO prediction. (D) Dry-120 DO prediction.

R2 of wet season testing data are 0.95 and 0.94, respectively,
suggesting good fit of the model to the water quality dataset
used. Additionally, the R2 of dry season testing data are 0.88
and 0.80. This result indicates a stable predictive capability of
our MANNmodel.

We also compared the performance of our MANN
model with the single layer ANN, SVR and LRM. The
ANN model used in this experiment is designed to have
one hidden layer and nine hidden units, which equals
the total number of hidden units of our MANN model.
For the SVR model, we use the grid search to get the
best parameters.

In addition, to reveal the benefits of applying dropout
mechanism and theMI feature selection, we compared ourmodel
with another twomodelsMANN-Dropout andMANN+Pearson.
In the MANN-Dropout, the dropout layer was removed from

the original MANN model. In the MANN+Pearson, we used
the Pearson correlation coefficient instead of the MI to select
input variables.

Our model is proved to be more accurate than the single layer
ANN, SVR, and LRM in all experiments (Figure 9). For example
in the wet-120 experiment, our proposed model has 0.19 RMSE
score, 0.14 MAE score and 0.94 R2 score. Though ANN performs
better than SVR in this case, it can only achieve 0.35 RMSE
score, 0.25 MAE score and 0.81 R2 score. Our MANNmodel can
achieve even higher accuracy when predicting 90 min ahead DO
in the wet season. In the dry season, our MANN model also has
the best performance. It achieves 0.05 RMSE score and 0.04MAE
score in the 90 min ahead prediction, which indicates very high
prediction accuracy.

The MANN-Dropout and the MANN+Pearson performed
better than the ANN, SVR, and LRM in most cases. However,
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FIGURE 9 | Performance evaluation for 6 different models. Wet-90 represents the experimental case for 90 min ahead prediction for the wet season. Other cases are

named in the same way. (A) RMSE of 6 different models in 4 experimental cases. (B) MAE of 6 different models in 4 experimental cases. (C) R2 of 6 different models

in 4 experimental cases.
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they still yield worse predictions than the original MANN
for these cases. For example, our MANN had an R2 score
of 0.81 in the dry-120, while the MANN-Dropout and
the MANN+Pearson had a lower R2 score of 0.76 and
0.29, respectively.

Without adding the dropout layer, the MANN-Dropout tends
to overfit with the training datasets. Therefore, when applying
the well-trained model to the testing dataset, it could not achieve
high performance as we expected. For the MANN+Pearson, only
two water quality parameters were chosen as inputs (Table 2).
Based on the correlations between the measured variables and
DO analyzed in subsection 2.2.2, water temperature and EC
also have a strong correlation with the concentration of DO.
Thus, removing that information can decrease the accuracy in
predicting the DO concentration.

Accurate predictions of DO concentrations can help better
manage aquatic ecosystems. Low DO concentrations can lead to
the mortality of aquatic organisms and the release of nutrients
from the sediments (Gillanders et al., 2011; Vilas et al., 2018).
The increase of nutrients in the water column can in turn
promote phytoplankton blooms which impair the health of
aquatic ecosystems (Vilas et al., 2018). Accurate short-term
predictions of DO, such as those derived in this study, can be
useful to trigger the implementation of management practices
aiming at reestablishing oxic conditions in the water column.
For instance, short-term predictions can be useful to activate
an aerator when oxygen levels are predicted to fall below
a threshold value. Thus, short-term predictions of DO can
inform cost effective solutions to prevent water quality crises.
The model and methodology presented here can be applied
to DO prediction in other aquatic ecosystems such as lakes
and rivers.

4. CONCLUSION

We proposed a water quality predictive model based on a multi-
layer feed-forward neural network with the mutual information
feature selection. We also evaluated the performance of our
model on water quality data collected from Baffle Creek. Unlike
most of the existing methods that are built on a shallow neural
network, the proposedMANNmodel was successful in capturing
non-linear temporal correlations for the trend of DO and our
method wasmore accurate compared to the benchmarkmethods.

Future investigations need to assess how climate data, rainfall
and soil information could be included to improve the model’s
performance. In addition, future investigations need to consider
how ANN perform against other mechanistic or statistical
models, such as time series models.
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